skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quartini, Enrica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Beneath Antarctica’s ice sheets, a little-observed network of liquid water connects vast landscapes and contributes to the motion of the overriding ice. When this subglacial water reaches the ocean cavity beneath ice shelves, it mixes with seawater, amplifying melt and in places forming deep channels in the base of the ice. Here we present observations from a hot-water-drilled borehole documenting subglacial water entering the ocean cavity at the grounding zone of Kamb Ice Stream and the Ross Ice Shelf. Our observations show that melt has removed approximately a third of the ice thickness, yet measurements reveal low rates of subglacial discharge in a turbid plume. Sediment cored from the channel floor shows larger discharge events occur and episodically deposit material from distinct geological domains. We quantify subglacial discharge and link our observations to the catchment upstream. We conclude that discrete discharge events are likely to dominate channel melt and sediment transport and result in the extensive ice-shelf features downstream of Kamb Ice Stream. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) The PIs propose to use airborne geophysics to provide detailed geophysical mapping over the Marie Byrd Land dome of West Antarctica. They will use a Basler equipped with advanced ice penetrating radar, a magnetometer, an airborne gravimeter and laser altimeter. They will test models of Marie Byrd Land lithospheric evolution in three ways: 1) constrain bedrock topography and crustal structure of central Marie Byrd Land for the first time; 2) map subglacial geomorphology of Marie Byrd Land to constrain landscape evolution; and 3) map the distribution of subglacial volcanic centers and identify active sources. Marie Byrd Land is one of the few parts of West Antarctica whose bedrock lies above sea level; as such, it has a key role to play in the formation and decay of the West Antarctic Ice Sheet (WAIS), and thus on eustatic sea level change during the Neogene. Several lines of evidence suggest that the topography of Marie Byrd Land has changed over the course of the Cenozoic, with significant implications for the origin and evolution of the ice sheet. Two seasons were flown. ICP5 operated from Byrd Camp using Basler C-GJKB and the HiCARS2 radar in January 2013, and ICP6 operated from WAIS Divide Camp using Basler C-FMKB and the MARFA radar in late 2014, both supported by the US Antarctic Program and Kenn Borek Air. ICP6 experienced issues with data overflow on the MARFA system, with resulted in missing radar records and timing ambiguities. GIMBLE data can be found at https://www.usap-dc.org/view/project/p0000435. Dataset organization Transects are provided a P/S/T nomenclature, organized by the Project they are flying in, the acquisition System (typically named after the aircraft) and the Transect within the Project. Transects were collected in preplanned systems with the following parameters: MBL corridor (MBL/MKB##/X|Y###) rotated from the EPSG:3031 polar stereographic projection at 61.75 degrees and separated by 7.5 km in the Y direction and 5 km in the X direction, with an origin of X -579.6 km and Y -803.3 km Untargeted transit lines used the name of the expedition (ICP5|ICP6) as the project, and used the flight and the increment within the flight to name the Transect (eg (ICP6/MKB2l/F19T01a). Processing These data represent focused VHF radargrams. The data are from the HiCARS2/MARFA radar system, a 60 MHz ice penetrating radar system that has operated in several different guises over the years. HiCARS2/MARFA operates with a 1 microsecond chirp with a design bandwidth of 15 MHz, allowing for ~8 range resolution. The record rate after onboard stacking is 200 Hz. High and low gain channels are collected from antennas on each side of the aircraft, for MARFA the antennas are recorded separately. In ground processing, the data was processed using focusing SAR over a range delay of 100 nsec following Peters et al, 2007 (doi:10.1109/TGRS.2007.897416). Where data loss in ICP6 prevented the generating of focused data, simpler unfocused 'pik1' data was substituted, with 10 coherent stakes and 5 incoherent stacks. Data format These data collection represents georeferenced, time registered instrument measurements (L1B data) converted to SI units. The data format are netCDF3 files, following the formats used for NASA/AAD/UTIG's ICECAP/OIB project at NASA's NSIDC DAAC (10.5067/0I7PFBVQOGO5). Metadata fields can be accessed using the open source ncdump tool, or c, python or matlab modules. A Keyhole Metadata Language (KML) file with geolocation for all transects is also provided. See https://www.loc.gov/preservation/digital/formats/fdd/fdd000330.shtml for resources on NetCDF-3, and https://nsidc.org/data/IR2HI1B/versions/1 for a description of the similar OIB dataset. Acknowledgements This field work was supported by NSF grant 1043761 to Young; ICP5 aircraft lease costs were supported by NASA Operation Ice Bridge grant NNX11AD33G. Data processing costs were supported by a gift from the G. Unger Vetlesen Foundation and the Open Polar Radar project (NSF grant 2127606) 
    more » « less